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ABSTRACT 
Software testing verifies and validates software systems. Mutation testing is a testing procedure where mutants are 

created by seeding fault to the code. Test cases are exercised on these mutants to measure the adequacy given by 

mutation score. If the mutants are not killed, then either the test data is not sufficient or there is the presence of 

equivalent mutant, which is an undecidable problem. Equivalent mutant problem makes testing process more difficult 

and tedious. A technique has been proposed in this paper to detect equivalent mutants by observing RIP model and 

control flow graph of original and mutant program. The approach has also been tested on some sample programs. 
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     INTRODUCTION
Testing refers to the task of checking out a system or its components in order to identify whether it satisfies the defined 

requirements or not. Testing when validates and verifies a software system is called as software testing. It identifies 

errors, mistakes or faults in the source code and provides knowledge about the quality of software under test. Mutation 

testing is a process in software testing to check whether a test set used to test a given software is adequate or not to 

reveal defects. Richard Lipton suggested mutation testing in 1971 but later on DeMillo, Lipton and Sayward had 

published it [1]. It is treated as white box testing or code based technique, as all or some portion of source code is 

required to access. It has also been used as black box testing. In Mutation testing, different versions called mutants of 

program are created by seeding artificial faults in the program [2].  

 

Hypotheses related to mutation testing are: 

Competent programmer hypothesis 

This hypothesis was first presented in 1978 by DeMillo et al. [2]. According to this, competent programmers generally 

commit very small faults so the faulty program is very close to the correct program. The faults committed by competent 

programmers are small, but those faults can have a huge effect on semantics of program. Therefore, the faults 

introduced to create the mutant should resemble the real mistakes which are likely to be done by programmer during 

writing code. So, some syntactic changes are made in the program to create the mutant.  

 

Coupling Effect hypothesis 

Another is coupling effect hypothesis that was also suggested in 1978 [2]. In this hypothesis, simple and complex 

errors were coupled. It states that test suites able to distinguish all mutants created by seeding single defects are so 

subtle that they can also reveal complex defects. Hence, the test suites adequate in killing first order mutant (i.e. 

mutants created by inserting one simple fault) are good enough to kill higher order mutants (i.e. the mutant generated 

by inserting more than one faults). So there is no need to generate higher order mutants.  
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Mutation testing provides mutation adequacy score that estimates the efficiency of test data. Mutation adequacy score 

[3] is given by-  

Mutation Adequacy Score (MS) =  
𝐷

𝑀−𝐸
          (1) 

Here, D- no. of dead mutants,  

          M- Total no. of mutants, 

          E- no. of equivalent mutant. 

Mutation adequacy score results between 0.0 and 1.0. More the adequacy score, more adequate is the test case. 

 

PROBLEM FORMULATION 
In mutation testing, mutants of program are created. Then a test data from a test set is exercised on main as well as 

mutant program.  

 If the outputs of both the programs are different, then the mutant is distinguished by test input and the test 

case is adequate.  

 If the output of both the programs are same for every test input in a test set then the reason can be (a) The 

test set is unadequate to kill the mutant and may be killed by improving the test inputs, or (b) The mutant is 

semantically same to original program i.e. equivalent mutant. Equivalent mutant is a program that is 

syntactically dissimilar but semantically similar to original program. 

 

In mutation testing, test cases might fail to detect mutants due to following reasons [4] 

i. The mutation has created an equivalent mutant and thus remains undetected.  

ii. RIP model is not satisfied by the test data. 

iii. Test set is not adequate. 

 

Equivalent mutant problem (EMP) is a major obstacle in mutation testing. An equivalent mutant is one which changes 

the original program in such a way that the semantics remain unchanged. There exists no test data which can identify 

difference among equivalent and original code. 

 

It had been empirically found that 15 minutes were taken to find an equivalent mutant [4]. Non detection of equivalent 

mutant will never lead to 100% mutation score. Manual detection of equivalent mutant is time consuming, thus making 

the cost of mutation testing high [5]. In the following example, the program P and its faulty version M are equivalent 

as they produce same output for all possible inputs. 

 
Figure1.Equivalent mutant 
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Equivalent mutant is an undecidable problem. The relationship between equivalence and test data generation had been 

examined by Budd and Angluin [6]. They proved that if equivalence between two programs is computed by a process, 

then adequate test data is also generated by a process and vice- versa. It is showed that no such assessable procedures 

exist. Hence, a fully automated result to equivalence problem is not possible. So, equivalence detection either between 

two programs or two mutants is not decidable. Some of mutants always remain hidden by an automated process, due 

to its undecidability [6]. 

 

RELATED WORK 
Many efforts had been done before to handle equivalent mutants. Various techniques and heuristics have been 

introduced by many scholars. Baldwin and Sayward suggested the idea of using optimization methods of compilers 

to identify equivalent versions of a code [7]. The notion behind is that optimization and de-optimization leads to the 

creation of semantically similar mutants. These compiler optimization techniques were implemented and were able to 

detect approximately 10% of equivalent mutants [8]. 

 

In 1996, it was observed that detection of equivalent mutant is an instance of the feasible path problem and 

mathematical based constraints were introduced [5]. If the input constraint is unsatisfied, only then the mutant is 

equivalent, otherwise mutants are killable as they satisfied the constraint. On average, this technique is able to find 

45% of identical mutants. A methodology based on program slicing helps in the manual examination of equivalence 

of mutants is proposed by Hierons et al. [9]. Program slicing extracts knowledge corresponding to a specific 

calculation that can automatically find likeness between mutant and its correct program. Harman et al. also 

recommended a related technique based upon program dependence to detect equivalent mutant [10]. 

 

To avoid the creation of identical mutants, co-evolutionary technique was proposed [11]. The aim of this technique is 

to produce featured test cases and mutants by simultaneously evolving test cases and mutants. Kintis and Malevris 

suggested the use of nine arrangements of data flow to find semantically alike mutants [12]. Their evaluation showed 

that 69% of functionally equal mutants created by AIOS operator were detected. 

 

Schuler et al. proposed the use of dynamic invariants to measure the impact of a mutant [13]. The idea behind this 

approach was then used by Grun et al. to assess mutation based on coverage impact [14] and then Schuler and Zeller 

encompassed it [4]. Schuler evaluated that coverage impact is more realistic for categorizing dead mutants. Another 

approach towards this direction, suggested the use of method I-EQM to segregate identical mutants [15]. The 

classification scheme used in this technique employed second order mutants for categorizing first order mutants as 

dead or live. 

 

PROPOSED WORK 
A technique using the RIP model and observing the control flow graph of original and mutant program is used to 

reveal functionally similar equivalent mutants. In the following paragraphs, Control Flow Graph (CFG) and RIP model 

have been discussed in brief. 

 

Control Flow Graph 
Control flow testing is a method where test data are used to run certain sequence of events. Control flow graph 

describes the flow of control by creating a graph of source code. CFG is a graphical representation of all paths that 

might be traversed during execution of a code. In CFG, basic block is represented by a node i.e. series of continuous 

code with no jumps or branches, and an edge denotes transfer of control from a node to another. There is exactly one 

entry and one exit in CFG. The CFG can be supposed of as a program counter traversing through the code. Many 

compilers use CFG to model a program. Reachability is the main property of graph used in optimization. If a sub-

graph is not connected from the sub-graph having entry block, then that sub-graph is unreachable during execution 

and so is an unreachable code [16].  

 

RIP model 
The Reachability, Infection and Propagation (RIP) model explains the effect of defects on program execution. The 

‘RIP Framework’ describes three essential conditions for considering a mutant dead. It also states that at least one of 

the essential conditions must be unsatisfied to treat a mutant equal to its correct program. 
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1. Reachability: Reachability requires that control should reach the mutated statement by test case. If no 

possible test suite can execute the mutated statement, then it is unreachable. 

2. Infection: Infection constraint requires that execution of mutated statement results in a state difference i.e. 

after running the mutated statement, the state of mutant and its “right” program must differs. Infection 

estimates the influence of mutants on state of a program. 

3. Propagation: The infection caused by mutated statement i.e. infected state must transmit to certain 

observable point in the program. The observable points can be an output or return statement and also the 

expression that depends on the mutated statement must also compute a different value. 

 

Proposed model is based on the assumption that equivalent mutants are syntactically different and semantically same 

i.e. functionally equivalent (for every possible test case they will produce the same output). Its meaning is that they 

are performing the same job using two different logics and if using a test case the difference in the logic can be realized 

then mutants can be determined as semantically similar i.e. equivalent mutants. So if using a test case the flow of 

control in P (i.e. Correct program) and P'(i.e. Equivalent mutant) is different then, following inferences can be drawn: 

(i) The reachability condition of RIP has been satisfied, (ii) The infection is not caused, (iii) The infection is caused 

but third condition of RIP i.e. Propagation to some observable point is not satisfied. As two programs which are 

semantically same may be logically different and if a test case has shown the difference between the two by the 

traversal of different paths in the CFG. It means the test case is adequate enough to realize the logical difference as 

the results are still same. So P and P' are logically different but functionally equivalent. (For example, programs for 

bubble sort and selection sort are functionally equivalent and logically different). So P' is an equivalent mutant. 

 

Implementation 
In a direction to test the proposed model, two cases are used. In first the equivalent mutant is created by making the 

change in an operator, and the second by making a change in an operand. Then the flow of control is observed.  

 

Sample program 1 

 
Figure 2.The mutant X' is created by replacing the operator >= in X in line no. 3 above by > in X'. 

 

The program X in Fig.2 finds the largest from three numbers a, b, c and X' is mutant of X. The input given is a=8, 

b=8, c=4. Fig.3 and Fig.4 shows the control flow graph for X and X' respectively. In X', the mutated statement no. 3 

is reached and executed. So, reachability constraint is satisfied. But the execution of mutated statement does not cause 

infection in terms of any change in variable’s value or memory states. Hence, infection constraint is not satisfied. At 

observable point i.e. statement no. 7, there is no sign of infection, which results in same output i.e. 8 in both programs. 

Also no other statement after mutated statement modifies the value of m, which can alter the infection done by mutated 

statement. 
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Figure 3.Control Flow Graph of X 

 

When we compare the flow of control for both X and X' in Fig.5 and Fig.6 respectively, it shows the execution of 

mutated statement no. 3. It is found that logic is changed at statement no. 3, which cause different path to be traversed 

after the execution of statement no. 3 in X' and X.  

 

 
Figure 4.Control Flow Graph of X' 

 

As in this sample1, infection only in terms of flow of control is observed, no state infection is present. Due to this, 

RIP model is not satisfied as whole, so the mutant is not considered as dead. 
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Figure 5.Flow of control of X 

 

Same output for the input (i.e. same input provided to both X and X') but through different path shows that both 

programs are not functionally different and the difference in the logic due to the mutation has been realized which 

causes the change in flow of control of X'. Therefore, there is no further need to kill this mutant being equivalent 

mutant. 

 
Figure 6.Flow of control of X' 

 

Sample program 2 

 
Figure 7.Original program M and mutant M' created by changing the operand in M i.e. n-1 is replaced by n. 

 

Fig.7 is program of sorting an array A of size n where M is original and M' is mutant program. Fig.8 shows control 

flow graph for both M and M'. The input (array) given to both M and M' is 7, 4, 5, 2. In M', the mutated statement no. 

2 is reached and executed, satisfying the reachability constraint. The loop at statement no. 2, runs for k=0 to k<n in 

M'. This causes infection in the value of k. But the infection is not propagated to observable point. Hence, results in 

same output. RIP model is not satisfied as whole as only reachability and infection constraint is satisfied. This shows 

that the mutant is not killed. 
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Figure 8.Control Flow Graph for M and M' 

 

When we look at Fig.9 and Fig.10, there is some difference in flow states of M and M'. The infection at statement no. 

2 is reflected from the flow of control. The loop at statement no. 2 is changed in M' which causes k to run one more 

time than the original program. So, this infection causes difference in flow of control for both original and mutant 

program but the output for both the programs remains same.  

 

 
Figure 9.Flow of control of M 

 

The same output for both program shows that both are semantically same. But different flow of control reflects the 

infection due to some syntactic difference in both programs. Hence, the mutant is treated as equivalent and we can 

stop the testing here. 

 

 
Figure 10.Flow of control of M' 
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CONCLUSION 
Software testing evaluates software system in order to identify whether the software is doing what it is expected to 

do. Mutation testing uses the concept of fault seeding. The performance of test sets are measured in terms of Mutation 

Adequacy Score (MS=D/(M-E), the value of which lies between 0 and 1 depending upon the capability of test sets to 

reveal the mutants. In best case, it should be one. If there is no equivalent mutant, the formula will be MS=D/M. But 

due to the presence of equivalent mutant, the number of E is very difficult to decide. Due to an undecidability, it is 

not possible to conclude why the value of MS is not 1 i.e. whether it is due to live mutant or equivalent mutant. In this 

research paper, it is concluded that if a mutation causes a change in the logic and if that change is realized (by 

comparing control flow graph) by certain test input and still the mutant is not killed, then there is no further need to 

enhance the test cases and the change may be considered as equivalent mutant. In future, the research work can be 

extended to automate this process so that time and efforts can be saved. 
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